Available online at www.sciencedirect.com

SCIENCE@DIRECT' JOURI\{ALOF-
Approximation
ACADEMIC Theory
PRESS Journal of Approximation Theory 120 (2003) 183-190

http://www.el sevier.com/l ocate/jat

Harmonic approximation and Sarason’s-type
theorem

Wolfhard Hansen®* and Ivan Netuka®!

@ Fakultdt fiir Mathematik, Universitdt Bielefeld, Postfach 100131, Bielefeld 33501, Germany
® Mathematical Institute, Charles University, Sokolovskd 86, 186 75 Praha 8, Czech Republic

Received 17 January 2002; accepted in revised form 27 September 2002

Abstract

In this paper uniform approximation of bounded harmonic functions on an arbitrary open
set in Euclidean space by harmonic functions arising as solutions of the classical or generalized
Dirichlet problem is studied. In particular, an analogue of Sarason’s H* + C theorem (known
from the theory of algebras of analytic functions) is established for harmonic functions.
© 2002 Elsevier Science (USA). All rights reserved.

1. Main results

In the present paper, we study uniform approximation of bounded harmonic
functions on an arbitrary open bounded subset U of the Euclidean space R?, d>2,
by means of harmonic functions arising as solutions of the classical or generalized
Dirichlet problem. As a consequence of our results we establish an analogue of
Sarason’s H* + C theorem (known from the theory of algebras of analytic
functions, see, e.g. [5]) for harmonic functions.

As usual, let €(U) and %(0U) be the Banach space of continuous real functions on
the closure U and the boundary U of U, respectively. The closed subspace of € (U)
consisting of all functions ~e%(U) which are harmonic on U is denoted by H(U),
and #,(U) stands for the space of bounded harmonic functions on U. Given
fe®(0U), we write Hyf for the Perron-Wiener—Brelot solution of the Dirichlet
problem on U for the boundary condition f.
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For every bounded function g on U, we define functions g, g* on U by

gs(x) = liminf g(y), ¢*(x) = limsup g(y)

yeUy—-x

so that
osc(g)(x) = g*(x) — gx(x)

is the oscillation of g at xe U. We note that of course gy is Ls.c., g* is u.s.c., and
g« <g"™ whence osc(g) is a positive u.s.c. function.

Our first approximation result, which is of interest for non-regular domains only,
reads as follows:

Proposition 1. Let o6 (0U) and fo € 6(U) such that fo>0 and osc(Hy @) <fy on OU.
Then there exists a function he H(U) such that

|h— Hyopl<fy on U. )

This shows again that, for every ¢ e €(0U), there exists a sequence (h,) in H(U)
which converges locally uniformly to Hye on U, a result already obtained in [3].

Given ¢ and f; such that osc(Hy) <fo, it is of course possible to choose o<1
such that osc(Hy @) <afy and consequently |2 — Hyo|<ofy on U. However, it may
be impossible to replace f; in (1) by some afy with a constant « <1 which does not
depend on the choice of ¢, fp.

Proposition 2. There exists a bounded domain U in R, d>3, having the following
property: For every 0<a <1, there exists o€ €(0U) such that osc(Hy @) <1 and there
is no function he H(U) satisfying

|h— Hyp|<a on U.

The next result shows to what extent functions in #,(U) can be approximated by
functions in H(U).

Theorem 3. Let ge #'w(U) and hoe H(U) such that osc(g) <hy and let K be a compact
subset of U. Then there exists a function he H(U) satisfying

lg—h|<3hy on U and |g—h|<thy on K.
More precisely, for every fe€(U) such that 0<f <hy on U and f = hy on AU, there
exists a function he H(U) satisfying
lg—h|<3hy+f on U.
Using the set U constructed in the proof of Proposition 2 we are able to show that
such an approximation cannot be improved.

An application of Theorem 3 leads to the following representation of functions in
H(U) +€(U)|y:
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Proposition 4. For every function Fe #w(U) + %(U0)|,, there exist ge #,(U) and
f€%(U) such that F = g+ f on U and sup |g|(U)<4sup |F|(U).

Then it is easy to obtain the following Sarason’s-type theorem:

Corollary 5. #,(U) + €(U)| is closed with respect to uniform convergence.

For the case of a regular set U, this is proved in [4].

2. Proofs
Let us start with the following observation:

Lemma 6. Let ge #w(U) and foe€(0U) such that osc(g)<fo on OU. Then there
exists g €€ (OU) such that [Hye — g| <} Hufs.

Proof. Since g* —1/,<gs« +1/y on OU and g* — 1/ (g« + /o resp.) is u.s.c. on U
(Ls.c. on QU resp.), there exists ¢ e €(0U) satisfying

g —1h<o<g«+1ify on OU.

By definition of solutions to the generalized Dirichlet problem
g<Hy(p+3/0) and Hy(e —3/0)<g.

By linearity of Hy we conclude that [Hyp — g|<iHyfy. O

Obviously, Proposition 1 follows immediately taking g = Hy and f; = 0 in the
following lemma.

Lemma 7. Let pe%(0U), ge #v(U), and fy, /1 €€ (U) such that
osc(g)<fo on U and g—31fi<Hyp<g-+3fi onU.
Then there exists he H(U) such that
|g—h|<f0+%f1 on U.

Proof. By Bliedtner and Hansen [1, VL.8.5], there exists a bounded sequence (4,) in
H(U) such that, for every xe U,

lim £,(x) =% ().
n— oo -
Hence, for every ye U,
lim 7,(y) = Huop(y).
n— oo
Fix ze QU. Then there exists a sequence (y,,) in U such that lim,,_, ,, y,» = z and the

harmonic measures s)lf converge vaguely to ¢V as m tends to infinity (see [1, VI.2.6]).
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In particular,

lim Hyo(y,) = lim £V (

m— o0 m—oo Im - n— oo

whence
gal(2) ~ (D)< lim Hyo(yn) = lim hy(z)<g*(2) + 11 (2).

So
g*—%ﬁsnlir& hn<g*+%f1 on U.

By assumption, ¢g* — gy <fo. Define
vi=—g+fo+3/1-

Then vx = —g* + fo +1/1> — g« + /1 and therefore
vx + lim 7,>0 on U. (2)

n— oo

The functions vy + h, are l.s.c. and uniformly bounded. Given ke N, let
F o =conv{h, :neN,n=k}.

For the moment, fix ke N and let u#0 be a measure on U. By Lebesgue’s dominated
convergence theorem, (2) implies that

lim [ (ve + hy) dpt = /(v*+ lim hn) du>0.

n— oo

Therefore there exists u; € . such that

s +u>0 on U (3)
(see [2] or [1, 1.1.9]). Obviously,
lim w = lim #,. 4)
k— oo n— o
Next let

w ::g+f0—|—%f].

Then wy = g« + fo +1 /1 >¢* + 1/ and therefore

Wy — lim wup = wy — lim h,>0 on U. (5)
k— o n— oo

Arguing as before we obtain a (finite) convex combination % of the functions u; such
that
we —h>0 on U.

Of course, (3) implies that
vg +h>0 on U

as well. In particular, —v<h<w on U, i.e.,
g—(fo+ifi)<h<g+(fo+1fi) on U. O
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Next we shall prove Proposition 2. Let
0 :=10,1[x] — 1,1[**x]0,2[, P :=]0, oo [xR" !,
S =0P=1{0} x R
Define ¢; = (1,0, ...,0), ¢; == (0, ...,0,1) and, for every ne NuU{0},
Xp=27"eq, B, = {xeR?:||x — x,||<27 "}

Clearly the balls B,, n>0, are disjoint. Because of the regularity of the half-balls
Pn B,, there exist o, >0 such that

C 1
Zp =X, +o,e;€PNB, and P75 ((San)°)<4— (neN). (6)
n n
Since line segments are polar, there exist strictly increasing continuous functions
S [0, 1] =[0,27"+2)] ne N, such that s,(«,) = 0 and the compact sets

d—1
L= {yERd:“”<yl<1’ ¢ S - 2">2<sn<y1>}

satisfy

1
n (7)

By our construction, the sets L,,, ne N, are disjoint. Let 7" denote reflection at S, i.e.,
T(y1,y2, - ¥a) = (=y1,¥2, ..., va) for y = (y1, ..., yq) eR?, and define

V = Q\G L, U=Vu T(V)UB(), Z = Loj {Zm T(Zn)}'
n=1

n=1

sZL”"([Rid) <

The set U is a simply connected domain such that all points ze JU\Z are regular.

From now on we fix neN. We choose pe%(0U) such that 0<¢p<1 on PnaU,
¢ = 1 on B,nJL,, the support of ¢ is contained in L, uT(L,), and @7 = —@. It is
immediately seen that 0< Hyp<1 on Pn U and

(Hye)eT = —Hye. (8)

In particular, osc(Hy¢@)<1, since all points in SNJU are regular.
To prove that U has the desired property it therefore suffices to show that there is
no function A€ H(U) such that

1
|/’1—HU(,0|<1 ——.
n
Suppose on the contrary that such a function / exists. Then /1 == % (h—heT)eH(U),
heT = —h, and, by (8),
h—Hyp =%(h—Hyp) —1(h— Hyp)-T

whence |i— Hyp|<1—1/n as well. So we may assume that hoT = —h. In
particular, 7 =0 on S~ U and of course |h|<|Hy| + 1<2. Therefore

[h(za)| = le2, ()| <262 (S0 By)°).-
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Let = (PnB,)\L,. By Bliedtner and Hansen [l, Proposition VI.9.4],
sgc(S )2 n (SN B,). Therefore
C C 1
e (SN B ) <ell (S0 B,) ) <ell P (SO B)) + 2 (S B.)) <o

where the last inequality follows from (6) and (7) (for the second inequality see
[1, Proposition V1.9.3]). Thus |A(z,)|<1/n.

On the other hand, limsup, ,. Hy¢(x) = 1. Indeed, there is a sequence (y,,) of
regular points in QU converging to z,, and taking x,, € U such that ||x,, — yu||<1/m
and |Hyo(xy,) — @(ym)|<1/m we have lim,,_, o, x,, = z, and lim,,_, . Hyo(x,,) =
lim,—, o @(ym) = 1. Since h(z,) = limyecy -, £(x), we finally conclude that

limsup |h— Hyep|(x)>1 —l.

xeUx—-z, n

This finishes the proof of Proposition 2.

We shall now combine Lemmas 6 and 7 for a proof of Theorem 3. So fix
ge#w(U), hoe H(U) and fe%(U) such that osc(g)<hy, 0<f <hy and f = hy on
OU. There exists ¢>0 such that osc(g)<(l — 2¢)hy. By Lemma 6, there exists
@e®(0U) such that

-2 1 —2¢
SHUh(): g

1
|Hyp — gl < hy on U.

Taking f; = (1 —2e)hy and fy=f +¢ehy we have |Hyp —g|<ifi on U and

osc(g)<fo on U (recall that osc(g) =0 on U). So by Lemma 7, there exists
he H(U) such that

|g—h|<fo+%f1 Z%ho +f onU

finishing the proof.

To show that the result is sharp let us look once more at the set U constructed in
Proposition 2. Fix ne N. Using the same notation as before we define a function g on
U by

HV(%QD-F%ISQB”)(X), xeV,
g(x) = —HV(%qur%lSmBn)(Tx), xeT(V),
0, xeSnBy.

Then |g|<3/2, ¢T =—g, ge#b(U), and osc(g)(z) =0 for all points
zedU\(ZU (SN B,)).

We next show that osc(g) <1+ 1/(4n). Indeed, obviously osc(g) =1 on SN B,.
Furthermore, by definition of g and the minimum principle, we obtain that, for every
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xeVy, = (PnB,)\Ly,
L<g(x) + &P B ((Sn By,

¢ c 1
lim  &P0B)((SAB,)) = el B ((SmB,,)c)<—4 :
Zn "

xeUx—-z,

Therefore liminf,_,. g(x)>1/2 —1/(4n). Since 0<<g<3/2 on V, we conclude that
1
n) <l +—.
osc(g)(zy) < +4n
By symmetry, osc(g)(7z,) <1+ 1/(4n) as well. Finally, consider meN, m##n. By
minimum principle, for every xe (P n B, )\Ly,

Oég(x) <%8;PGB,,7)C((SmBm)C)’

where
c ¢ 1 1
: (PNBy) ¢\ — o(PNBy) c <_
xell/{rxn_)Z/ll & (SN By)") =¢, ((SNB,) )<—4m\4.
So osc(g)(Tzm) = osc(g)(zm) <3/8. Thus
1
1+—.
osc(g) < +4n

Take f == hy =1+ 1/(4n). To prove the sharpness of our result it suffices to show
that there is no function he H(U) such that

1
|g—h|<% (1 —;) on U.
Indeed, suppose that we have such a function /. As in the proof of Proposition 2 we
may assume that hoT = —h, h=0 on SNnU so that now |h|<3/2+3/2=3,
|h(z,)|<3/(2n). Moreover,

3. 3
lim sup g(x) 25 limsup Hyo(x) = =.

X—=Zy X—zy 2
Consequently,
3 3 3 1
lim su X)) > ——=Z(1-=
xXe U,x—E,, |g |< ) 2 2n 2 < n>

proving our claim.
Instead of Proposition 4 which would be sufficient to prove Corollary 5 we present
a more precise version:

Proposition 8. Let ge #w(U), f€%(U), and hye H(U) strictly positive such that |g +
f|<ho on U. Then, for every >0, there exist je #,(U), fe6(U) such that §+f=
g+ f and |G| < (3 + d)ho.
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Proof. Since f €% (U) and
—f —ho<g< —f+hy on U,
we have
~f —ho<g«<g*< —f+hy on U,
ie.,
osc(g) = g* — g« <2hg<(2 + 3 0)hy.
By Theorem 3, there exists e H(U) such that
lg—h|<3(2+38)hg = 3+ 0)h. O

Proof of Corollary 5. Let g,e #v(U), f,€%(U)|, such that the sequence (g, + /»)
converges uniformly. In order to show that the limit belongs to #,(U) + %(U)|,, we
may assume that g; + /1 = 0 and that (taking a subsequence)

[(Gns1 + 1) = (gn +Ju)[ <27

Fix hye H(U) such that hy>1. By Proposition 8, there exist §,e #,(U) and
fn€%(0)|, such that

Jn +f:1 = (g;1+1 - gn) + (fn+1 _f;1) and |gn| <4-27"hg
for every neN. Then of course |f,|<|Gn +/fu| 4 |dn] <5 - 27"hg. Define

o0 o0

g = Gn;s f:Zf:l
Then ge #v(U), f€%(U)|, and

lim (g, +1,) = Z G +Sm)=9+/. O

m=1
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